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Abstract
In this paper, firstly we find the optimal constant for a kind of Sobolev inequality
on the unit circle via Fourier series. Then we apply the optimal constant on a
nonlinear rod equation to give sufficient conditions on the initial datum, which
guarantee finite-time singularity formation for the corresponding solution.

PACS numbers: 02.30.Xx, 02.30.Zz, 02.30.Ik, 02.40.Vh
Mathematics Subject Classification: 30C70, 35Q58, 58E35

1. Introduction

Although a rod is always three dimensional, if its diameter is much less than the axial
length scale, one-dimensional equations can give a good description of the motion of the rod.
Recently, Dai [20] derived a new (one-dimensional) nonlinear dispersive equation including
extra nonlinear terms involving second-order and third-order derivatives for a compressible
hyperelastic material. The equation reads

vτ + σ1vvξ + σ2vξξτ + σ3(2vξvξξ + vvξξξ ) = 0,

where v(ξ, τ ) represents the radial stretch relative to a pre-stressed state, σ1 �= 0, σ2 < 0
and σ3 � 0 are constants determined by the pre-stress and the material parameters. If one
introduces the following transformations:

τ = 3
√−σ2

σ1
t, ξ = √−σ2x,

then the above equation turns into

ut − utxx + 3uux = γ (2uxuxx + uuxxx), (1.1)

where γ = 3σ3/(σ1σ2). In [21], the authors derived that the value range of γ is from −29.4760
to 3.4174 for some special compressible materials. From the mathematical view point, we
regard γ as a real number.
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When γ = 1 in (1.1), we recover the shallow water (Camassa–Holm) equation derived
physically by Camassa and Holm in [5] by approximating directly the Hamiltonian for Euler’s
equations in the shallow water regime, where u(x, t) represents the free surface above a flat
bottom. Recently, the alternative derivations of the Camassa–Holm equation as a model for
water waves, respectively, as the equation for geodesic flow on the diffeomorphism group of
the circle were presented by Johnson [24] and, respectively, by Constantin and Kolev [12].
The geometric interpretation is important because it can be used to prove that the least action
principle holds for the Camassa–Holm equation (cf [13]). It is worth to point out that a
fundamental aspect of the Camassa–Holm equation, the fact that it is a completely integrable
system, was shown in [7, 17] for the periodic case and [1, 8, 11] for the nonperiodic case.
Some satisfactory results have been obtained for this shallow water equation recently. Local
well-posedness for the initial datum u0(x) ∈ Hs with s > 3/2 was proved by several authors
(see [26, 28, 31]). For the initial data with lower regularity, we refer to Molinet’s paper [29]
and also the recent paper [4]. Moreover, wave breaking for a large class of initial data has
been established in [14, 15, 26, 27, 34]. However, in [32], global existence of weak solutions
is proved but uniqueness is obtained only under an a priori assumption that is known to hold
only for initial data u0(x) ∈ H 1 such that u0 − u0xx is a sign-definite Radon measure (under
this condition, global existence and uniqueness was shown in [16] also). Also it is worth to
note that global conservative solutions are constructed for any initial data in H 1 by Bressan
and Constantin [4] recently. In [2, 18], it was proved that all solitary waves (peaked when
c0 = 0 or smooth when c0 �= 0) are solitons. The stabilities of the solitons are proved in
[18, 19], respectively. Recently, in [23], among others, Himonas, Misiołek, Ponce and the
second author showed the infinite propagation speed for the Camassa–Holm equation in the
sense that a strong solution of the Cauchy problem with compact initial profile cannot be
compactly supported at any later time unless it is the zero solution, which is an improvement
of a first result in this direction obtained in [9].

If γ = 0, (1.1) is the BBM equation, a well-known model for surface waves in a canal
[3], and its solutions are global.

For general γ ∈ R, the rod equation (1.1) was studied sketchily by the Constantin and
Strauss in [19] first. Local well-posedness of strong solutions to (1.1) was established by
applying Kato’s theory [25] and some sufficient conditions on the initial data were found to
guarantee the finite blow-up of the corresponding solutions for spatially nonperiodic case.
Later, in [36], the second author proved the well-posedness result in detail and various refined
sufficient conditions on the initial data were found to guarantee the finite blow-up of the
corresponding solutions for both spatially periodic and nonperiodic cases (see also some
results in [33]). It should be mentioned that for γ < 1, (1.1) admits smooth solitary waves
observed by Dai and Huo [21]. Let u(x, t) = φ(ξ), ξ = x − ct be the solitary wave to (1.1).
It was shown that φ(ξ) satisfies

±ξ = −√−γ

(
1

2
π + arcsin

2γφ − (γ + 1)c

(1 − γ )c

)
− ln

(
√

c(c − φ) +
√

c(c − γφ))2

(1 − γ )cφ

for γ < 0 and

±ξ = √
γ ln

(
√

c − γφ) − √
γ (c − φ))2

(1 − γ )c
− ln

(
√

c − γφ +
√

c − φ)2

(1 − γ )φ

for 0 < γ < 1. In [19] (see [35] also), Constantin and Strauss proved the stability of these
solitary waves by applying a general theorem established by Grillakis, Shatah and Strauss
[22].

We now finish this introduction by outlining the rest of the paper. In section 2, we recall
the local well-posedness for (1.1) with initial datum u0 ∈ Hs, s > 3/2, and the lifespan of
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the corresponding solution is finite if and only if its first-order derivative blows up while the
solution remains bounded, that is, the rod breaks. In section 3, we find the optimal constant
for a kind of Sobolev inequality via Fourier series. Then we show blow-up of solutions to the
nonlinear dispersive rod equation by applying this optimal constant.

2. Preliminaries

In this paper, we concentrate on the periodic case and S = R/Z denotes the unit circle. In
[19, 36], it is proved that

Theorem 2.1 [19, 36]. Let the initial datum u0(x) ∈ Hs(S), s > 3/2. Then there exists
T = T (‖u0‖Hs ) > 0 and a unique solution u, which depends continuously on the initial
datum u0, to (1.1) such that

u ∈ C([0, T );Hs(S)) ∩ C1([0, T );Hs−1(S)).

Moreover, the following two quantities E and F are invariants with respect to time t for (1.1):{
E(u)(t) = ∫

S

(
u2(x, t) + u2

x(x, t)
)

dx

F(u)(t) = ∫
S

(
u3(x, t) + γ u(x, t)u2

x(x, t)
)

dx.

Actually, the local well-posedness was proved for both periodic and nonperiodic case in the
above paper.

The maximum value of T in theorem 2.1 is called the lifespan of the solution, in general.
If T < ∞, that is lim supt↑T ‖u(·, t)‖Hs = ∞, we say that the solution blows up in finite
time. The following theorem tells us that the solution blows up if and only if the first-order
derivative blows up.

Theorem 2.2 [19, 36]. Let u0(x) ∈ Hs(S), s > 3/2, and u be the corresponding solution to
problem (1.1) with lifespan T. Then

sup
x∈S,0�t<T

|u(x, t)| � C(‖u0‖H 1). (2.1)

T is bounded if and only if

lim inf
t↑T

inf
x∈S

{γ ux(x, t)} = −∞. (2.2)

For γ �= 0, we set

m(t) := inf
x∈S

(ux(x, t) sign{γ }) , t � 0, (2.3)

where sign{a} is the sign function of a ∈ R and we set m0 := m(0). Then for every t ∈ [0, T )

there exists at least one point ξ(t) ∈ S with m(t) = ux(ξ(t), t).

Lemma 2.3 [19]. Let u(t) be the solution to (1.1) on [0, T ) with initial data u0 ∈ Hs(S),

s > 3/2, as given by theorem 2.1. Then the function m(t) is almost everywhere differentiable
on [0, T ), with

dm(t)

dt
= utx(ξ(t), t), a.e. on (0, T ).

Consideration of the quantity m(t) for wave breaking comes from an idea of Seliger [30]
originally. The rigorous regularity proof is given in [15] for Camassa–Holm equation.
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Set Qs = (
1 − ∂2

x

)s/2
, then the operator Q−2 can be expressed by

Q−2f = G ∗ f =
∫

T

G(x − y)f (y) dy

for any f ∈ L2(S) with

G(x) = cosh(x − [x] − 1/2)

2 sinh(1/2)
, (2.4)

where [x] denotes the integer part of x. Then equation (1.1) can be rewritten as

ut + γ uux + ∂xQ
−2

(
3 − γ

2
u2 +

γ

2
u2

x

)
= 0. (2.5)

Just as in [19, 36], it is easy to derive a equation for m(t) from (2.5) as

dm

dt
= −γ

2
m2 +

3 − γ

2
u2(ξ(t), t) −

[
G ∗

(
3 − γ

2
u2 +

γ

2
u2

x

)]
(ξ(t), t) (2.6)

a.e. on (0, T ), where m(t) and ξ(t) were defined in (2.3) and lemma 2.3.
If γ = 3, it turns out that (2.6) is a Riccati-type equation with negative initial data for

any nonconstant u0. So the solutions to (1.1) in periodic case definitely blow up in finite time
with arbitrary nonconstant initial data u0.

In what follows, we assume that 0 < γ < 3.

3. The optimal constant for a kind of Sobolev inequality

Due to the following inequality

0 �
(∫

S

f (x) dx

)2

� ‖f ‖2
H 1(S) for any f ∈ H 1(S),

we know the norm

‖f ‖2
H 1(S) + df̄ 2 for d > −1

is equivalent to the H 1-norm’s square of f , where f̄ = ∫
S
f (x) dx.

It is easy to find that the integral
∫

S
u(x, t) is an invariant with respect to time t, if u(x, t)

is a solution to (1.1). The purpose of this section is to establish the best constant for a kind of
Sobolev inequality. The main theorem reads

Theorem 3.1. For any f ∈ H 1(S), we have

‖f ‖2
L∞(S) �

(
1

e − 1
+

1 − d

2(1 + d)

) (‖f ‖2
H 1(S) + df̄ 2), (3.1)

for any d > −1. Moreover, the constant is optimal and can be achieved by function
f = G(x − x0) − d

1+d
for some x0, where G(x) is the Green’s function to

(
1 − ∂2

x

)
and

defined by (2.4).

Proof. Since f is a periodic function and the above inequality is rotation invariant, it is
sufficient to consider it in one period [0, 1] and expand f as a cosine series

f (x) =
∞∑

n=0

an cos(2πnx),

for x ∈ [0, 1].
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First by direct computation,∫
S

f 2(x) dx =
∫

S

( ∞∑
n=0

an cos(2πnx)

)2

dx = a2
0 +

∞∑
n=1

a2
n

2
(3.2)

and ∫
S

f 2
x (x) dx =

∫
S

( ∞∑
n=1

2nπan sin(2πnx)

)2

dx =
∞∑

n=1

2n2π2a2
n. (3.3)

Now, let

A =
∞∑

n=1

2

1 + 4π2n2
.

Thanks to Cauchy–Schwartz inequality, we have

‖f ‖2
L∞(S) �

( ∞∑
n=0

|an|
)2

�
(

1 +
1

(1 + d)A

) ( ∞∑
n=1

|an|
)2

+ (1 + (1 + d)A)|a0|2

�
(

A +
1

1 + d

) ∞∑
n=1

1 + 4π2n2

2
|an|2 + 1 + (1 + d)A)|a0|2

=
(

A +
1

1 + d

) ((
|a0|2 +

∞∑
n=1

1 + 4π2n2

2
|an|2

)
+ d|a0|2

)

=
(

A +
1

1 + d

) (‖f ‖2
H 1(S) + df̄ 2

)
,

where we used (3.2) and (3.3). The equality can be achieved, if we choose

an = 2

1 + 4π2n2
, a0 = 1

1 + (1 + d)A

∞∑
n=1

|an| = A

1 + (1 + d)A
.

From the following identity:

1

x
+

∞∑
n=1

2x

x2 + 4π2n2
= cosh(x/2)

2 sinh(x/2)
, ∀ x �= 0, (3.4)

by taking x = 1, we get

A +
1

1 + d
= 1

e − 1
+

1 − d

2(1 + d)
.

Using (3.4) again, we get the achieved function. This finishes the proof. �

Remark 3.1. The proof also can be done for the full Fourier series, i.e., f (x) =
a0 +

∑∞
n=1 an cos(2πnx) + bn sin(2πnx).

Remark 3.2. By taking d = 0 in theorem 2.1, we recover the optimal constant for the
following inequality:

‖f ‖2
L∞(S) � cosh(1/2)

2 sinh(1/2)
‖f ‖2

H 1(S),

5
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which is proved in [34] via a variational method. It is worth mentioning that the method here
is much simpler than that in [34].

When d = 1, the inequality (3.1) reduces to

‖f ‖2
L∞(S) � 1

e − 1

(‖f ‖2
H 1(S) + f̄ 2

)
,

which is an improvement for the previous one (proved in [34])

‖f ‖2
L∞(S) � ‖f ‖2

H 1(S) + f̄ 2.

4. Blow-up criteria

After local well-posedness of strong solutions (see theorem 2.1) is established, the next
question is whether this local solution can exist globally. As far as we know, the only
available global existence results are for the case γ = 1: see the paper by Constantin [6] for
a PDE approach, and the paper by Constantin and McKean [17] for an approach based on the
integrable structure of the equation. If the solution exists only for finite time, how about the
behavior of the solution when it blows up? What induces the blow-up? On the other hand, to
find sufficient conditions to guarantee the finite time blow-up or global existence is of great
interest, especially for sufficient conditions added on the initial data.

Before we write the main theorem of this section, let us recall the following inequality
proved in [37]: for all f ∈ H 1(S)

G ∗ (
f 2 + 1

2f 2
x

)
(x) � Cf 2(x), (4.1)

with

C = 1

2
+

arctan(sinh(1/2))

2 sinh(1/2) + 2 arctan(sinh(1/2)) sinh2(1/2)
.

For simplicity, for d > −1, we take the following notation:

Cd := 1

e − 1
+

1 − d

2(1 + d)
and ‖f ‖H 1

d
:= ‖f ‖2

H 1(S) + df̄ 2.

The main theorem of this section is as follows.

Theorem 4.1. Let 0 < γ < 3, d > −1. Assume that u0 ∈ H 2(S) satisfies m0 < 0 and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m2
0 >

(6 − γ −
√

12γ − 3γ 2)Cd

2γ
‖u0‖2

H 1
d (S)

, if 0 < γ � γ0,

m2
0 >

(3 − (1 + 2C)γ )Cd

γ
‖u0‖2

H 1
d (S)

, if γ0 < γ � 1,

m2
0 >

(3 − γ )(1 − C)Cd

γ
‖u0‖2

H 1
d (S)

, if 1 < γ � γ1,

m2
0 >

(6 − γ −
√

12γ − 3γ 2)Cd

2γ
‖u0‖2

H 1
d (S)

, if γ1 < γ < 3,

where

γ0 = 3

4C2 + 2C + 1
, γ1 = 3C2

C2 − C + 1
,

while C is the optimal constant in (4.1). Then the life span T > 0 of the corresponding
solution to (1.1) is finite.

6
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Remark 4.1. If γ = 1, equation (1.1) is reduced to the Camassa–Holm equation, while the
condition is

m0 < 0, m2
0 > 2(1 − C)Cd‖u0‖H 1

d
,

which is an improvement of m2
0 >

(‖u0‖2
H 1 + ū0

2
)

proved in [34].

Remark 4.2. Where γ0 ≈ 0.521 and γ1 ≈ 2.555 are solutions, respectively, to

−1

2
+

1

2

√
12 − 3γ

γ
= 2C and

(
−1

2
+

1

2

√
12 − 3γ

γ

)
γ = (3 − γ )C.

The conditions for 0 < γ � γ0 and γ1 < γ < 3 are established in [36] first. The cases for
γ < 0 and γ > 3 were also discussed in [36].

First, we have the following blow-up result for a Riccati-type ordinary differential equation.

Lemma 4.2. Assume that a differentiable function y(t) satisfies

y ′(t) � −Cy2(t) + K, (4.2)

with constants C,K > 0. If the initial datum y(0) = y0 < −
√

K
C

, then the solution to (4.2)
goes to −∞ in finite time.

It is easy to prove. For the details, please refer to [37].
Now, let us start the proof for the main theorem from (2.6). We will treat it case by case.

(i) 0 < γ � γ0.
By the representation of G, we have[
G ∗

(
3 − γ

2
u2 +

γ

2
u2

x

)]
(x, t)

= 1

2 sinh
(

1
2

) ∫ x

0

ex−η− 1
2 + e

1
2 +η−x

2

(
3 − γ

2
u2(η, t) +

γ

2
u2

x(η, t)

)
dη

+
1

2 sinh
(

1
2

) ∫ 1

x

ex−η+ 1
2 + eη−x− 1

2

2

(
3 − γ

2
u2(η, t) +

γ

2
u2

x(η, t)

)
dη.

(4.3)

Direct computation yields that∫ x

0
e−η

(γ

2
α2u2(η, t) +

γ

2
u2

x(η, t)
)

dη

� −
∫ x

0
e−ηγ αu(η, t)ux(η, t) dη

= −e−η γ α

2
u2(η, t)

∣∣x
0 −

∫ x

0
e−η γ α

2
u2(η, t) dη

holds for any α > 0. We have∫ x

0
e−η

(
(α2 + α)

γ

2
u2(η, t) +

γ

2
u2

x(η, t)
)

dη � −αγ

2
e−ηu2(η, t)

∣∣x
0 .

Now we let

α2 + α = 3 − γ

γ
,

7
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which has one positive root α0 with

α0 = −1

2
+

1

2

√
12 − 3γ

γ
. (4.4)

Therefore ∫ x

0
e−η

(
3 − γ

2
u2(η, t) +

γ

2
u2

x(η, t)

)
dη � −α0γ

2
e−ηu2(η, t)

∣∣x
0 .

Moreover, from (4.3), just use the above trick for each term, then one obtains that[
G ∗

(
3 − γ

2
u2 +

γ

2
u2

x

)]
(ξ(t), t) � α0γ

2
u2(ξ(t), t). (4.5)

The approach used above parallels that presented in the paper by Constantin [10] for the
Camassa–Holm equation (γ = 1).
Now combining (2.6) and (4.5) together, we have

dm

dt
� −γ

2
m2 +

6 − γ −
√

12γ − 3γ 2

4
u2(ξ(t), t)

� −γ

2
m2 +

(6 − γ −
√

12γ − 3γ 2)Cd

4
‖u0‖2

H 1 , (4.6)

where we used (3.1) and the conservation of H 1
d -norm.

If

m0 < −
(

(6 − γ −
√

12γ − 3γ 2)Cd

2γ

)1/2

‖u0‖H 1
d
,

then the solution m(t) to (4.6) goes to −∞ in finite time by applying lemma 4.2.
(ii) γ0 < γ � 1

By direct computation, we have

G ∗
(

3 − γ

2
u2 +

γ

2
u2

x

)
(x, t) = γG ∗

(
u2 +

1

2
u2

x

)
(x, t) +

3(1 − γ )

2
G ∗ u2(x, t)

� γG ∗
(

u2 +
1

2
u2

x

)
(x, t)

� γCu2(x, t), (4.7)

where C is the constant in (4.1).
Putting (4.7) into (2.6), one has

dm

dt
� −γ

2
m2 +

(
3 − γ

2
− γC

)
u2(ξ(t), t)

� −γ

2
m2 +

(3 − (1 + 2C)γ )Cd

2
‖u0‖2

H 1 .

Due to lemma 4.2, it is easy to see that the condition given in theorem 4.1 guarantees the
blow-up of solutions.

(iii) 1 < γ � γ1

Similar to the case (ii),

G ∗
(

3 − γ

2
u2 +

γ

2
u2

x

)
(x, t) = 3 − γ

2
G ∗

(
u2 +

1

2
u2

x

)
(x, t) +

3(γ − 1)

4
G ∗ u2

x(x, t)

� 3 − γ

2
G ∗

(
u2 +

1

2
u2

x

)
(x, t)

� 3 − γ

2
C0u

2(x, t),

8
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which reduces (2.6) to

dm

dt
� −γ

2
m2 +

(3 − γ )(1 − C0) cosh(1/2)

4γ sinh(1/2)
‖u0‖2

H 1 .

we can get the blow-up result in this case.
(iv) γ1 < γ < 3

A similar argument for the first case 0 < γ < γ0 can be used here.

The proof of theorem 4.1 is complete.

Remark 4.3. From the proof, the reader may ask why we do not find the optimal constant C
for the following convolution problem directly:

G ∗
(

3 − γ

2
u2 +

γ

2
u2

x

)
(x) � Cu2(x).

The answer is that we do not have any effective method to solve this problem at present. We
hope we can deal with it in the near future.
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